
Introduction

Thermal analysis techniques such as thermo-

gravimetry (TG) and differential scanning calorime-

try (DSC) have been widely used to study the kinetics

and mechanism of solid thermal decomposition reac-

tions, generally carried out under a linear temperature

program. The kinetic triplet (activation energy E, fre-

quency factor A and kinetic model) can be derived

from the experimental data based on the kinetic equa-

tion of solid-gas phase decomposition as follows:
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where α(0<α<1) is the fractional conversion, ß

(K min–1) the heating rate, E (kJ mol–1) the activation

energy, A (min–1) the pre-exponential factor, and R
the gas constant. T(K) is the absolute temperature.

The specific form of f(α) represents the hypothetical

model of the reaction mechanism. Approaches to ex-

tract the kinetic triplet from the above expression can

be generally divided into two categories according to

the kind of data used, i.e. differential method by

usding derivative thermogravimetry (DTG) data and

integral method using TG data.

For integral methods, integrating Eq. (1) and

substituting x=E/RT for T gives:
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here p(x) is the Arrhenius temperature integral. Al-

though the integral methods are believed to be more

reliable and accurate than the differential meth-

ods [1], the temperature integral has been a subject of

much concern and controversy for a long time, since

it cannot be analytically integrated. Many authors

have proposed extensive approximations of p(x) with

different mathematical complexities and numerical

precisions [2–13], and the researchers were always

seeking to prove how closely their formulae approach

the precise values of p(x). Flynn [14] provided a re-

view on the various approximate expressions for the
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temperature integral, in which he reappraised the ac-

curacies and utilities of these approximations accord-

ing to their percentage deviations. In a recent paper,

Heal [15] proposed an accurate method to evaluate

the temperature integral by a series of Chebyshev

polynomials. More recently, Tang et al. [16] also pre-

sented a precise formula for the temperature integral

by using two-step linear fitting process. Moreover,

some papers proposed a kind of approximations of

p(x) through integration over small temperature inter-

vals to enhance the accuracy [17–20].

Sestak ever presented a good discussion on the

applicability of the p(x)-function in the kinetic analy-

sis under non-isothermal conditions [21]. In the eval-

uation of the temperature integral, an important point

is that it should not be regarded as a pure mathemati-

cal problem, but should be considered in connection

with the aim of kinetic analysis, i.e. accurate extrac-

tion of kinetic parameters and model description. Any

approximation leading to accurate enough evaluation

of the kinetic parameters should be regarded as rea-

sonable. In this sense, some approximations with higher

mathematical complexities may have no remarkable ad-

vantage over some other simple approximations. With

this idea in mind, in this paper we propose a new consid-

eration on the published approximations and compare

them by examining their performances in kinetic analy-

sis, whereby the integral methods are evaluated and

compared in terms of error analysis.

Theoretical consideration

Before the error analysis of integral methods, we first

propose a new classification of the methods to divide

them into two types. The error analysis will be conducted

in section 3 respectively with regard to the two types.

It is known that besides p(x), another function

h(x) introduced by Senum and Yang [12] can also be

used to express the integral form (2) as follows:
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The values of p(x) and h(x) are calculated vs. x
by numerical integral and shown in Fig. 1. Compared

with p(x), h(x) varies slowly and has an asymptotic

value of 1 as x increases, and so it may be easier to ex-

plore reasonable approximations for h(x).

The logarithmic form of Eq. (3) is adopted in almost

all the integral methods for convenience of analysis:
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Various integral methods differ from each other

just in their different ways to deal with the term of

ln[h(x)]. In terms of the different ways the integral

methods fall into two types as follows.

Type A: Merging the term of ln[h(x)] into ln
AE

Rβ










[2–7]

This process leads to the expression:
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This type assumes that the term of
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 can be regarded as a constant for T,

and thus the plot of ln
( )G
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vs. the reciprocal of T

would result in a straight line for a correct reaction

model function. The activation energy E is obtained

from the slope term of the regression line, and then

the frequency factor A can be evaluated from the in-

tercept term. For the methods of this type, the differ-

ences among them lie in the involved different ap-

proximations of temperature integral:
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(Coats-Redfern’s method [2])
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Fig. 1 Values of h(x) and p(x)in the domain of 1≤x≤100
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(Lee-Beck’s method [4])
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(Li Chung-Hsiung’s method [5])
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(Agrawal’s method [6])
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(6–5) (Ran-Ye’s method [7])
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The simplest one is the simplified Coats-Red-

fern’s method:
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Obviously, this method adopts Frank-Kameneskii’s

approximation [3]:

p(x)=exp(–x)/x2, i.e. h(x)=1 (7)
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can be viewed as a constant has been a subject of con-

siderable discussions. In most cases, the inequality of
E

RT
� 1 holds for the general range of E and temperat-

ures of decomposition reactions, and thus

ln
AR

E
h

E

RTβ
















 can be regarded as constant.

Type B: Merging the term of ln[h(x)] into –2lnx–x:

For this type, the term ln[ ( )]h x isn't combined
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AE
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 to organize a nearly constant term, but

integrated with the term of –2lnx–x which varies

with x. The major point of this method is that ln[ ( )]h x
is assumed to have the following approximation form:
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by which we obtain the integral expression:
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The plot of ln
( )
–

G

T a

α
vs.1/T should result in a

straight line of slope bE/R for the correct reaction

model. E and A can be obtained respectively from the

slope and intercept terms.

A method of this kind was first proposed by

Madhusudanan et al. [10], for which the approximate

formula of ln[p(x)] is

ln[ ( )] – . ln – . – .p x x x= 1921503 1000953 0297580 (10)

Due to its simplicity, the formula has been

widely used in thermal analysis [22–25]. Two other

formulae [26] in this form, which were usually re-

ferred to [27–29], were proposed as below:

ln[ ( )] – . ln – . – .p x x x= 1920620 1000974 0299963 (11)

ln[ ( )] – . ln – . – .p x x x= 1884318 1001928 0389677 (12)

The following formula developed recently is due

to Tang et al. [16] by using a two-step linear fitting

process:

ln[ ( )] – . ln –

– . – .

p x x

x

= 189466100

100145033 037773896
(13)

It should be pointed out that the difference of the

parameter sets of (a, b, c) in the Eqs (10–13) is due to

the corresponding different deriving procedures and

as well the accuracy of the original tabulated values

of p(x) used in the derivation. Equations (10) and (11)

were respectively derived by the two- and threeterm

truncations of MKN expansion of p(x) while for Eq.

(12) all terms were reserved. All these three equations

share some common linear relationship assumptions.
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Comparatively, Eq. (13) should be more accurate

since it was derived directly from the numerical lin-

early fitting calculation.

An extreme situation of Eq. (8) is a=0, i.e.

ln[ ( )]p x bx c= + . Doyle [9] found that within a cer-

tain interval of x the term ln[ ( )]p x varies almost lin-

early vs. x. He proposed the approximation of this

form by taking the first two terms of the asymptotic

expansion of p(x) as the approximation:

ln[ ( )] – . – . ( )p x x x= ≤ ≤10516 53308 20 60 (14)

We can improve the parameters by using linear

fitting calculation, and obtain a more accurate ap-

proximation:

ln[ ( )] – .

– . ( )

p x x

x

= −
≤ ≤

105162960

526936572 20 60
(15)

In mathematics, there’s another simplified form

of Eq. (8), i.e. ln[ ( )] ln ( )p x a x c b= + = 0 . However,

since the term varies nonlinearly with lnx during the

general interval ln[ ( )]p x of x, there’s no possibility to

obtain an approximation in this form.

Error analysis of the integral methods

In this section we conduct the error analysis of kinetic

parameters respectively for the above two types of in-

tegral methods. Let us use (Ee, Ae) to denote the evalu-

ated values of (E, A). The relative error of can then be

defined by the following expression:

ε E
eE E

E
= –
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Error analysis of Type A methods

The integral methods of Type A share a common process

of calculating the activation energy, i.e. viewing
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The activation energy is obtained from the slope term

of the regression curve:
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Therefore, it’s obvious that all these methods

have the same errors εΕ in calculating the activation

energy and differ from each other only in the intercept

of the regression line which is related to the frequency

factor. Hence, even the simplest form (Eq. (6–6)) may

be good enough to evaluate the activation energy.

Ortega [30] derived the error of the activation

energy regarding the simplest form of approxima-

tions, as follows:
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Although Eqs (18) and (20) are derived for the

simplest form of p(x), since all the methods of Type A

share the same evaluated values of activation energy,

these methods should all satisfy both equations. Error

εE only depends on the variable x=E/RT, and thus can

be computed by numerical integral. Figure 2 shows

the values of εE in the domain of 5 100≤ ≤x . It can be

seen that the error is less than 2% when x ≥10 . The

evaluated value of activation energy is always less

than its real value. Since an error less than 2% is gen-

erally acceptable, the results indicate that it’s unnec-

essary to use sophisticated approximations in prac-

tice, and even the simplest form of p(x) (Eq. (7)) is ac-

curate enough to calculate the activation energy.

The error of frequency factor A should be ana-

lyzed correlated with the approximation form of h(x),

since A is involved in the intercept term of the regres-

sion expression. We take the simplified Coats-Red-

fern method as an example to evaluate the error. Re-

writing Eq. (6–6) gives:
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Combining it with Eq. (5) gives:
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if we define r=Ae/A, this ratio can be easily deduced

as the function of x:
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The r ratios of other integral methods of this type

are deduced in the same way and presented in Table 1.

Figure 3 gives the values of these ratios in the domain

of 5 100≤ ≤x . It can be seen that the simplified

Coats-Redfern method has the greatest error (the

mean absolute error is 10% in 20 60≤ ≤x ), while the

Coats-Redfern method shows the best performance

among all these methods. This result is interesting

since, except the simplified Coats-Redfern method,

the Coats-Redfern method adopts the simplest ap-

proximation of the temperature integral:

h x
x

( ) –=1
2

(23)

This further indicates that sophisticated approxi-

mations of the temperature integral may be unneces-

sary for the extraction of kinetic parameters by using

the Type A methods.

The error of pre-exponential factor for the

Coats-Redfern method can be further reduced based

on Eq. (23). Taking the form of this equation for ref-

erence, we suppose an approximate form of h(x):

h x a
b

x
( ) –= 






1 (24)

It is easy to obtain the coefficients a and b by lin-

ear regression, and the result in the domain of

20 10≤ ≤x 0 is:

h(x)=0.98985(1–3.12028/x) (25)

By this approximate form of h(x), we can see

from Fig. 4 that the error of frequency factor is less

than 0.5% in the domain of 20 100≤ ≤x . Compara-

tively, the error by Coats-Redfern method exceeds
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Table 1 The ratios r=Ae/A of Type A methods εE

h x x
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E( ) [( ) ]/ε ε1 2+ +

Li Chung-Hsiung’s method h x e x x xE x

E E( ) [( ) – ]/ [( ) – ]ε ε ε1 6 1 22 2 2+ +

Agrawal’s method h x e x x xE x

E E( ) [( ) – ]/ [( ) – ]ε ε ε1 5 1 22 2 2+ +

Ran-Ye’s method

h x e x x x( ) [( ) – . ]/ [( ) – ]ε ε εE x

E E1 4 6 1 22 2 2+ +

h x e x x xE x
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Fig. 3 Ratios r=Ae/Afor Type A methods in the domain of

5 100≤ ≤x

Fig. 4 Ratios r=Ae/A for the Coats-Redfern method and the

method using the approximation

h(x)=0.98985(1–3.12028/x)



2%. During 10 20≤ ≤x , the error by Coats-Redfern

method is nearly two folds of the error by the new

form of h(x).

Error analysis of Type A methods

For the Type B methods, since the simulated activa-

tion energy Ee satisfies Eq. (9), we differentiate the

left term with respect to 1/T and obtain:
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/
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T T
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The true value of activation energy E satisfies

Eq. (4), which can be rewritten as:
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Differentiating the above logarithmic form with

respect to 1/T gives:
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Combining Eqs (26) and (28) gives:
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by which the error of activation energy can be easily

derived as:
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In what follows the revised MKN method with

new parameters by Tang (Eq. (13)) and the Doyle

method (Eq. (14)) are compared by the above error

expression. For the revised MKN method, the error of

activation energy is:

ε E –MKN =











1

100145033

1 189466100
1

– .

–
( )

–
– .

–
h x x

(31)

and for Doyle method (a=0):

ε E –Doyle = 









1

10516

1
1

– .
–

( )
–

h x
(32)

The ratio r=Ae/A is also deduced in the similar

way as indicated above for the error analysis of

Type A:

r h x e= +( )
–

1 ε ε
E

–1–a –2–a b x–bx–x–cE (33)

Figure 5 shows the errors of activation energy

(εE–MKN, εE–Doyle) for the revised MKN method and

Doyle method, and the error of frequency factor

(εA=(Ae–A)/A=r–1) for the revised MKN method. It

can be seen that the revised MKN method has excel-

lent performance in calculating activation energy.

The error εE–MKN is less than 1% in most cases of

x≥10, and even approaches zero when x>15. The er-

ror εE–Doyle is much higher, though it is less than 4%

when x>20. The error of frequency factor εA of the re-

vised MKN method is less than 4% at most values

of x. The error of frequency factor of Doyle method is

not listed here since it has too large values (mean abso-

lute error >55% in 20 60≤ ≤x ). The results indicate

that the revised MKN method can lead to enough accu-

rate activation energy and acceptable frequency factor,

while Doyle method should be used cautiously.

Conclusions

In the extraction of the kinetic triplet (activation en-

ergy E, frequency factor A and kinetic model) from

the decomposition data, different approximations of

the temperature integral are used for various integral

methods. In this paper, we first propose a new classi-

fication approach to divide the integral methods into

two types, in terms of their different ways to treat the

temperature integral. The two types of integral meth-

ods and their adopted temperature integral approxi-

mations are analyzed in detail. The error analysis of

activation energy shows that Type A methods share

the same errors of activation energy, while the

Coats-Redfern method can lead to more accurate

value of frequency factor than others. The accuracy of
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Fig. 5. Errors of the kinetic parameters for Type B method.

εE_MKN ,εA: errors of activation energy and frequency

factor for revised MKN method; εE_Doyle: error of

activation energy for Doyle’s method



frequency factor can be further enhanced by adjusting

the expression of the Coats-Redfern approximation.

The Coats-Redfern method, although with quite sim-

ple temperature integral approximation, has the best

performance in Type A methods. This implies that the

usage of a sophisticated approximation of the temper-

ature integral may be unnecessary in kinetic analysis.

For Type B, the revised MKN method has a lower er-

ror in calculating activation energy and an acceptable

error in frequency factor, and thus it can be reliably

used. Comparatively, the Doyle method has higher er-

ror of activation energy and produces great error of

the frequency factor, and thus it is not recommended

to be used in kinetic analysis.
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